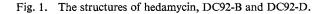
Communications to the Editor

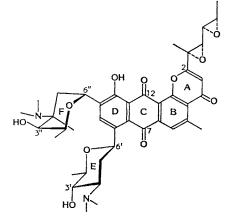
DC92-B, A NEW ANTITUMOR ANTIBIOTIC FROM ACTINOMADURA

Sir:

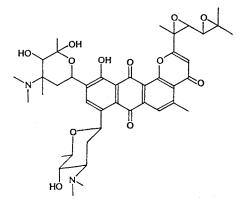
We have isolated new anthraquinone antitumor antibiotics, DC92-B and related DC92-D, from a culture broth of *Actinomadura* sp. In this communication we report the production, isolation, physico-chemical properties and biological activities of DC92-B and DC92-D.

The producing organism was isolated from a soil collected in Machida-shi, Tokyo, Japan, and has been identified as Actinomadura sp. A stock culture maintained in a deep freezer $(-70^{\circ}C)$ was inoculated into seed medium consisting of glucose 10 g, soluble starch 10 g, yeast extract 5 g, Bacto-tryptone 5 g, beef extract 3 g and $CaCO_3$ 2 g per liter of tap water. A 5%-vegetative seed culture was inoculated into fermentation medium consisting of glucose 15 g, Pharmamedia 20 g, MgSO₄ \cdot 7H₂O 0.5 g and KH₂PO₄ 0.5 g per liter of tap water (pH 7.0 prior to sterilization). The antibiotics were detected by paperdisc assay against *Bacillus subtilis* on agar plate. The peak titers were usually reached after 4 days incubation at 28°C.


The culture broth (150 liters) was filtered and the filtrate was applied to a column of Diaion HP-20 (Mitsubishi Chemical Industries Limited), the column was washed with deionized water, 50% MeOH and then eluted with MeOH. MeOH eluate was evaporated and added with deionized water, adjusted to pH 10 and then extracted with EtOAc. The extract was concentrated to give a brown syrup, which was applied to a Sephadex LH-20 column and chromatographed with MeOH. The active fractions were combined and concentrated to dryness. The residue was chromatographed on an aminopropyl silane (NH₂) silica gel (J. T. BAKER, Chemical Co.) column with toluene - Me₂CO as eluents, and the active fractions were further purified with HPLC using a column packed with aminopropyl silane (NH₂) silica gel to yield 150 mg of DC92-B and 70 mg of DC92-D.


DC92-B and DC92-D, obtained as an orange powder, showed the properties as summarized in Table 1. The molecular formula of DC92-B was determined as $C_{42}H_{52}N_2O_{12}$ by secondary ion mass spectrum (SI-MS). The UV absorption maxima (244, 264 (sh), 424 nm in MeOH) and the IR spectrum of DC92-B are similar to those of anthraquinone type antibiotics¹⁻⁵. The structure of DC92-B was assigned by NMR spectroscopic studies and was shown to be similar to that of hedamycin⁶⁾ except for the side chain at C-2 and for the ring F (Fig. 1). The molecular formula of DC92-D was determined as $C_{42}H_{50}N_2O_{12}$ by SI-MS. ¹H and ¹³C NMR spectra of DC92-D are quite similar to that of DC92-B excepting that the ring E of DC92-D

	DC92-B	DC92-D
Appearance	Orange powder	Orange powder
Molecular formula	$C_{42}H_{52}N_2O_{12}$	$C_{42}H_{50}N_2O_{12}$
MW	776	774
SI-MS (m/z)	777 (M+1) ⁺	775 (M+1) ⁺
UV λ_{\max}^{MeOH} nm(ε)	244 (39,000), 264 (sh, 26,000),	243 (38,000), 264 (sh, 28,000),
	424 (7,600)	384 (sh, 6,000), 424 (6,500)
IR $\nu_{\max}^{CHCl_3}$ cm ⁻¹	3450, 1657, 1632, 1587, 1465, 1442,	3440, 1660, 1632, 1590, 1468, 1443,
	1422, 1380, 1308, 1254, 1076	1421, 1380, 1368, 1310, 1253, 1073
Rf value*	0.54	0.20
Solubility Soluble:	MeOH, EtOH, Me ₂ CO, DMSO,	MeOH, EtOH, Me ₂ CO, DMSO,
•	EtOAc, CHCl ₃ , toluene	EtOAc, CHCl ₃ , toluene
Insoluble:	H_2O , hexane	H_2O , hexane


Table 1. Physico-chemical properties of DC92-B and DC92-D.

* NH₂ Silica gel TLC (Merck, Art. No. 15647), solvent: toluene - Me₂CO (6:4).

DС92-В

has the enol structure (Fig. 1) which has been found in the ring E of photohedamycin⁷⁾. Photohedamycin was reported as the photoproduct of hedamycin⁸⁾ and DC92-D is also obtained by treatment of DC92-B under the daylight. Details of structure determination will be reported elsewhere.

DC92-B and DC92-D are active mainly against Gram-positive bacteria as shown in Table 2. The LD₅₀ value of DC92-B is 0.145 mg/kg (iv) in mice and that of DC92-D is 5.63 mg/kg (iv). DC92-B exhibits antitumor activity against murine lymphotic leukemia P388 *in vivo* showing 43% increase of life span (ILS) at a dose of 0.10 mg/kg by a single ip injection. DC92-B is also effective against murine sarcoma 180 *in vivo* showing a T/C 34% at a daily dose of 0.10 mg/kg (iv) for 5 days (Table 3). Further

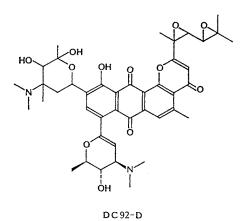


Table 2. The antimicrobial spectrum of DC92-B and DC92-D (MIC, μ g/ml).

	·-/·	
Test organism	DC92-B	DC92-D
Staphylococcus aureus ATCC 6538P	0.04	1.5
Streptococcus faecium ATCC 10541	1.5	15
Bacillus subtilis #10707	0.15	3.0
Escherichia coli ATCC 26	10	>100
Klebsiella pneumoniae ATCC 10031	2.5	25
Shigella sonnei ATCC 9290	10	100
Salmonella typhi ATCC 9992	40	>100
Proteus vulgaris HX2 ATCC 6897	80	>100
Pseudomonas aeruginosa BinH#1	10	100
Candida albicans ATCC 10231	80	>100

THE JOURNAL OF ANTIBIOTICS

Compound	Dose (mg/kg)	Treatment schedule	ILS (%)
DC92-B	0.40	Once, day 1	-52
	0.20	Once, day 1	5
	0.10	Once, day 1	43
	0.050	Once, day 1	34
	0.025	Once, day 1	38
Mitomycin C	6.0	Once, day 1	65

Table 3. Antitumor activity of DC92-B.

(A) Against murine lymphotic leukemia P388 (ip-ip).

(B) Against murine sarcoma 180 (sc-iv).

Compound	Dose (mg/kg)	Treatment schedule	T/C
DC92-B	0.20	Every day, days $1 \sim 5$	Toxic
	0.10	Every day, days $1 \sim 5$	0.34
	0.050	Every day, days $1 \sim 5$	0.57
	0.025	Every day, days $1 \sim 5$	0.51
Mitomycin C	6.0	Once, day 1	0.45

studies on antitumor activity and toxicity of DC92-B and DC92-D are in progress and will be reported in due course.

Acknowledgment

The authors deeply thank to Mrs. MAYUMI YOSHIDA for NMR measurement and to Miss MITSUE AOYAGI for her technical assistance.

> Isami Takahashi Kel-ichi Takahashi[†] Kozo Asano Isao Kawamoto Tohru Yasuzawa Tadashi Ashizawa[†] Fusao Tomita^{††} Hirofumi Nakano

Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida-shi, Tokyo 194, Japan [†]Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Nagaizumi-cho, Shizuoka 411, Japan ^{††}Kato Memorial Bioscience Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida-shi, Tokyo 194, Japan

(Received February 5, 1988)

References

1) MAEDA, K.; T. TAKEUCHI, K. NITTA, K. YAGI-

SHITA, R. UTAHARA, T. ŌSATO, M. UEDA, S. KONDŌ, Y. OKAMI & H. UMEZAWA: A new antitumor substance, pluramycin. Studies on antitumor substances produced by actinomycetes. XI. J. Antibiotics, Ser. A 9: 75~81, 1956

- SCHMITZ, H.; K. E. CROOK, Jr. & J. A. BUSH: Hedamycin, a new antitumor antibiotic. I. Production, isolation, and characterization. Antimicrob. Agents Chemother. -1966: 606~612, 1967
- KONDO, S.; T. WAKASHIRO, M. HAMADA, K. MAEDA, T. TAKEUCHI & H. UMEZAWA: Isolation and characterization of a new antibiotic, neopluramycin. J. Antibiotics 23: 354~359, 1970
- KANDA, N.: A new antitumor antibiotic kidamycin. I. Isolation, purification and properties of kidamycin. J. Antibiotics 24: 599~ 606, 1971
- FURUKAWA, M.; I. HAYAKAWA, G. OHTA & Y. IITAKA: Structure and chemistry of kidamycin. Tetrahedron 31: 2989~2995, 1975
- 6) ZEHNDER, M.; U. SÉQUIN & H. NADIG: The structure of the antibiotic hedamycin. V. Crystal structure and absolute configuration. Helv. Chim. Acta 62: 2525~2533, 1979
- FREDENHAGEN, A. & U. SÉQUIN: The photodeactivation of hedamycin, an antitumor antibiotic of the pluramycin type. J. Antibiotics 38:236~ 241, 1985
- FREDENHAGEN, A. & U. SÉQUIN: The structures of some products from the photodegradation of the pluramycin antibiotics hedamycin and kidamycin. Helv. Chim. Acta 68: 391~402, 1985